Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

M A Swillam

M A Swillam

The American University in Cairo, Egypt

Title: Hybrid plasmonic electro-optical ring resonator based modulator based on electrically tuning the ITO’s properties

Biography

Biography: M A Swillam

Abstract

This work presents the study and the design of optical ring modulator based on silicon-on-insulator ring resonator topped with silicon dioxide. The input and the output waveguides are separated from the ring resonator by a hybrid plasmonic waveguides in the coupling regions. The power-splitting mechanism is applying the external electric field to the hybrid plasmonic waveguides. The tuning mechanism takes the advantage of changing the refractive index of the modes and attenuating the power. The proposed ring modulator designed to operate under the telecommunication wavelength (1550 nm). A finite difference time domain method with perfect matching layer (PML) absorbing boundary condition is taken up to simulate and analyze the ring modulator. The main operations in digital signal processing are modulation and switching. The growing demand for high capacity signal processing systems made the assimilation of photonic circuitries into electronic circuitries. Optical signal processing systems and components concerned a lot of research. Optical ring resonators are among the fundamental components in optical systems since they can be used as modulators, filters, and sensors. Integrating indium-tin-oxide (ITO) with silicon electro-optic modulator has received enormous attention in the past few years because it’s electrically-induced epsilon-near-zero (ENZ) characteristics. The proposed modulator is based on silicon-on-insulator ring resonator topped with silicon dioxide. The input waveguide and the ring resonator are separated by a hybrid plasmonic waveguide in the coupling region, the same with the ring resonator and the output waveguide. The operation principle of this device is based on coupling the power from input waveguide to the ring resonator to the output waveguide. Tuning the optical power at the output waveguide is through applying electric field to the hybrid plasmonic waveguides, the generated carrier at the ITO layer results in changing the refractive indices of the even and odd modes of the input waveguide and the ring resonator. Moreover, it attenuates the coupling power to the ring resonator.